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Abstract 

This paper is illustrated about the behavior of quantum mechanics looked like the that of 

classical mechanics when the principle quantum number approaches large values. This 

phenomenon was explained based on the energy quantization and probability density. When 

the energy levels of Bohr hydrogen atom for large quantum states are determined, these 

energy values are continuous values. It has been stated that the one- dimensional particle in a 

box wave function and probability density by changing the quantum numbers. The 

probabilities of finding the particle in a box for two sections are calculated with the aid of 

computer programming. It is found that the calculated probability density results depend not 

only on the quantum number but also on particle’s location. 

 

1. Introduction 

All branches of physics which were developed before the year 1900 are known as classical 

physics or the classical theory of physics. Newtonian mechanics and Maxwell’s 

electromagnetic theory were the two main branches of classical physics. The classical 

physics works perfectly well within the realm of the macroscopic world.  Attempts were 

made to explain the microscopic systems by introducing the new concepts contrary to the 

classical ideas. Quantum mechanics is the theory of microscopic systems. It must yield 

accurate results not only on the microscopic scale, but also the classical limit as well. For 

microscopic systems, the size of action variables is of the order of h; for instance, the angular 

momentum of the hydrogen atom is n , where n is infinite. Since  =h/p the classical 

domain can be specified by the limit 0. This means that, for a system whose de Broglie 

wavelength is too small compared to its size, this system can be described accurately by 

means of classical physics. The classical limit can be described by the limit h0 or, 

equivalently, by 0. In these limits the results of quantum mechanics should be similar to 

those of classical physics. Bohr formulated the correspondence principle in 1923 to serve as a 

guide in the development of quantum theory. It states that the quantum theory should agree 

with classical physics in the limit in which quantum effects become insignificant. The 

classical limit is attained when the quantized variables are much larger than their minimum 

quantum size. The correspondence principle inspired most of Bohr’s work and has played an 

important role in the initial development of quantum theory. Quantum mechanics cannot 

predict the occurrence of an event with certainty. The quantum mechanics determines only 

probability of an event. Therefore, the probability plays a fundamental role in quantum 

mechanics. The wave function Ψ which represents the wave nature of the particle can be 

regarded as a measure of the presence of the particle. The probability ranges from zero to 

one. A probability of one means certainty where as a probability of zero means non-

occurrence. The probability of finding the particle in a finite region of space defined by x1 < 

x < x2 is given by the integral. The probability of finding the particle under consideration 

move between x = −∞ and x = ∞ is described by 
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2. Energy of the Electron in the n
th

 Bohr Orbit 

For the electron moving in an orbit the electrostatic attractive force acting on it provides the 

centripetal force. Therefore, 
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where m, e, v and r are the mass, the charge, the tangential velocity and the radius of the 

electron in the orbit. The total energy    of the electron is the sum of the kinetic and potential 

energies: 

                   
2 2

2

n n

n n

1 e e
E mv

2 r 2r
                                                             (2.2) 

From Bohr’s quantum condition  
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The energy of the electron in the nth orbit equation may be expressed as 
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Substituting the values of m, e and h constants 

     
n 2

13.6
E eV

n
   ,         n = 1, 2, 3, …                                                   (2.5) 

This shows that the energy of the ground state of hydrogen is 13.6 eV. 

 

3. The Probabilities in Classical Mechanics and Quantum Mechanics 

The classical Mechanics predicts that the probability of finding the particle in a box (PIB) is 

uniform throughout the box. Classically, the probability is one inside the box of length L. 

The particle passes back and forth between the walls and it has an equal probability of being 

found anywhere between x=0 and x=20Å. The classical probability is constant as follow; 

                          Classical P(x)  = 
1

0.05
L
                                               (3.1) 

Thus the particle is equally likely to be found at any point in the box. In classically, the 

probability of finding the particle between x=a and x=b is, 

                  Classical Probability (a,b) = 

b

a

Classical  P(x) dx                    (3.2) 

The probability of finding the particle in the left-half (or) right-half of the box (between 0 to 

10 Å) is 0.5. Consider for the section between a=L/4(5 Å) and b=2L/4(10 Å) with box length 

20 Å, the probability of finding the particle is  

                   Classical Probability (a,b) = 

2L/4

L/4

Classical  P(x) dx = 0.25     (3.3)                

Therefore, for any quarter of the box (between 0 to 5 Å) is 0.25. The section from L/4 to 2L/4 

spans one-fourth of the box, and CM says the probability of finding the particle there is 0.25, 

which is one-fourth. For another section between a=0.2293L and b=0.6817L, the probability 

of finding the particle is 

                          

0.6817L

0.2293L

Classical  P(x) dx = 0.4524                                        (3.4)  

In Quantum Mechanics (QM), the wave function of the particle in a box is   
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where (n = 1,2,3,…)                        (3.5)   

In this paper,  the wave functions with the box length L is 20Å and quantum number n is the 

lowest five states(n=1,2,3,4,5) are determined against the x-coordinate by using following 

excel formula.  

                  = (SQRT (2/20))*(SIN (N*A2*3.141592653589/20))               (3.6) 

The probability density in quantum mechanics is denoted by P(x);  

                P(x) = 
2*

n (x) (x) (x)   
           

                                         (3.7)   

and it is real. The lowest five probability distribution functions are determined against the x-

coordinate by using excel formula as follow; 

                       = ((SQRT (2/20))*(SIN (N*A2*3.141592653589/20))) ^2   (3.8) 

Then the probability of finding the particle in each region for the ground state wave function 

inside the box length 20 Å is determined by the following; 
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Now, examine the probability of finding the particle in a specific section of the box for the 

various quantum numbers. The probability of finding the particle from x=a to x=b, in 

quantum state n is; 

      Quantum Probability (n,a,b) =  

b

a

Quantum P(x) dx                        (3.13)    
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The above equation is solved with FORTRAN programming.  In this paper consider for two 

sections, start to do first is used a= L/4 and b = 2L/4. Then another section a = 0.2293L and b 

= 0.6817L is calculated. 

 

4. Results and Discussion 

 According to energy of hydrogen atom, the calculated energy values of hydrogen atom from 

n= 1 to n=100 levels are shown in Figure (4.1). The energy values of hydrogen atom for large 

values of n are so close together and they become indistinguishable. Since the energy of a 

Bohr orbit is proportional to 1/n
2
, it can be seen the energy values of hydrogen atom are 

continuous values in limit quantum number n100. The continuous value of energy is one of 

the concepts of classical physics. The quantum theory must approach classical theory in the 

limit n, where n is a quantum number. This phenomenon is the Bohr’s correspondence 
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principle. Then the particle in a box system is proved the wave functions and probability 

densities change as the quantum number increase. The graph of the lowest five state wave 

functions against the x-coordinate is shown in Figure (4.2(a)). By changing the n=1, 2, 3, 4, 5 

the plots change as n increases. If the description is denoted by ‘node’, a node is a location 

where  changes sign. The five wave functions graph shows that the number of nodes 

increases as n increases. For the graph of the lowest five probability densities for n=1, 2, 3, 4, 

5 against the x-coordinate is shown in Figure (4.2(b)). It can be seen that the peaks are closer 

when the quantum number n becomes larger. This means that the probability of finding the 

particle at any point inside the box is nearly. Thus, the results of quantum mechanics reduce 

to those of classical physics when the quantum number n becomes very large. 

Next, the corresponding principle by using particle in a box in terms of probability density of 

finding a particle is attempted to explain. The classical probability function is constant with a 

value of 1/L. This is, the probability density is the same at any point in the box. When the 

classical probability distribution of ground state (n=1) wave function PIB is performed inside 

the box length L=20Å, it is 0.05 at any point. In quantum mechanics, the quantum functions 

show peaks of magnitude 2/L and some points of the box where the probability is very small. 

The CM and QM are not the same in the probability density for ground state wave function 

against the x-coordinate at any point illustrated by Figure (4.3). Then the probability of 

finding the particle between within the each quarter region for ground state of PIB is 

calculated in Table (4.1). It is found that there are difference between CM and QM. 

Therefore, the probabilities of finding the particle in a specific section of the box are 

continued to determine by increasing the values of n (n = 2, 3, 4, …, 100). The first section 

from a=L/4 (5Å) to b=2L/4 (10Å) and second section from a=0.2293L (4.586Å) to 

b=0.6817L (13.634Å) for the value of n =1 to 100 are determined. The calculated results for 

each section are shown in Figures (4.4) and (4.5) respectively. If the particle is in various 

quantum state n=1 to 100, for two sections of the CM and QM probabilities of finding the 

particle are nearly equal. It can be seen that the probability of finding a particle of QM is not 

constant values for small quantum states and large quantum states give the same values in 

both sections. Second section of probability values are more differ than the first section. 

Significance difference in the behavior is observed at small values of n. It is found that more 

agreement at large values of quantum number. Therefore, the probability density function 

depends not only on the particle location in the box but also on the quantum state. 

                        
Figure (4.1) The energy values of hydrogen electron Vs quantum number n.   
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Figure (4.2) (a) The PIB wave functions and (b) The probability densities PIB against the x-

coordinate. (n=1 to 5) respectively. 

 

 

 
 

Figure (4.3) The probability density of PIB for ground state compare with QM & CM. 

 

Table(4.1) The calculated values of probability of finding a particle within the quarter region 

in ground state. 
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Figure (4.4) The probability of finding the particle for first section from a=L/4 to b=2L/4. 

 

 

 
Figure (4.5) The probability of finding the particle for second section from a=0.2293L to 

b=0.68172L. 
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